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a b s t r a c t

We present a new algorithm for estimating parameters in reaction–diffusion systems that
display pattern formation via the mechanism of diffusion-driven instability. A Modified
Discrete Optimal Control Algorithm (MDOCA) is illustrated with the Schnakenberg and
Gierer–Meinhardt reaction–diffusion systems using PDE constrained optimization tech-
niques. The MDOCA algorithm is a modification of a standard variable step gradient algo-
rithm that yields a huge saving in computational cost. The results of numerical
experiments demonstrate that the algorithm accurately estimated key parameters associ-
ated with stationary target functions generated from the models themselves. Furthermore,
the robustness of the algorithm was verified by performing experiments with target func-
tions perturbed with various levels of additive noise. The MDOCA algorithm could have
important applications in the mathematical modeling of realistic Turing systems when
experimental data are available.

� 2010 Published by Elsevier Inc.
1. Introduction

The Turing reaction–diffusion model (Turing [51]) is the paradigm model for biological pattern formation (see, for exam-
ple, Murray [39]). This model, a coupled system of parabolic equations, has the counter-intuitive feature that diffusion can
drive a spatially uniform stable state unstable leading to spatially non-uniform steady states. Turing termed the reactants
‘‘morphogens” and, under the assumption that cells respond to signaling chemicals in a concentration-dependent manner,
this model serves to set up a morphogen pre-pattern to determine cell differentiation. This model has been applied to a
whole range of patterning phenomena in biology, for example, fish pigmentation patterns [30], shell patterns [36], cartilage
formation [37]. The idea of morphogens interacting in this way to form patterns is still controversial, but recent experimental
evidence suggests that the Turing model cannot be simply dismissed [48].

Turing patterns have been shown to exist in chemistry [7,40], and in fact the model has been applied in many areas of
science. For example, it has been applied in ecology [47] and used as a caricature model by Barrio et al. [3].

The aim of this paper is to present a numerical method for estimating parameters in Turing systems using optimal control
theory [42]. Optimal control theory is a mathematical technique used to determine control variables that maximize a per-
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formance criterion subject to constraints (state equations). It continues to be an active area of research with applications in
many areas [2,15,21,27,31,33,34]. Parameter estimation and data assimilation problems can be formulated in this context by
seeking model parameters corresponding to state variables that ‘‘best approximate” observed data in some sense, for exam-
ple least squares. When a cost functional measuring the discrepancy between solutions and target functions is formulated,
constrained optimization techniques are employed (one-shot, sensitivity or adjoint-based methods) to construct an iterative
algorithm [10,29] for estimating model parameters. There are numerous works in the literature that apply optimal control
theory to reaction–diffusion systems [4–6,8,12,13,16,19,20,45]. However, relatively few works focus on estimating param-
eters in nonlinear reaction–diffusion systems [1,14,24,28], and to the best of our knowledge, none address parameter esti-
mation for the Turing reaction–diffusion model. It is in this area of knowledge that our paper contributes. The main challenge
in parameter estimation for Turing models is that the solution of such systems typically requires numerical integration over
a large time interval [0,T] with many small time-steps Dt. The methodology presented in this paper capitalizes on the fact
that the target functions are stationary, which results in an algorithm with a vast reduction in computational cost compared
to the standard optimal control approach.

The structure of our paper is outlined as follows. In Section 2 the governing reaction–diffusion systems (‘state equa-
tions’) are introduced and a Direct Problem defined where we seek morphogen concentrations associated with given
key parameters. In Section 3 the Inverse Problem is defined where we seek to recover the key model parameters that
led to given target morphogen concentrations. The mathematical theory of optimal control is then used to derive an
optimality system, which allows us to characterize the optimal (‘key’) parameters of the systems in terms of adjoint
variables (see Section 4). In Section 5 we discuss the numerical methods used to approximate the state and adjoint
equations, construction of the target functions, and implementation of a Modified Discrete Optimal Control Algorithm
(MDOCA). The results of some numerical experiments are presented in Section 6 and the results and implications
discussed in Section 7.
2. Direct problem

We study coupled pairs of reaction–diffusion equations, called the ‘state equations’, with the following general non-
dimensional form:
@u
@t ¼ Dur2uþ f1ðu;vÞ;
@v
@t ¼ Dvr2v þ f2ðu; vÞ;

(
ð1Þ
where u(x, t) and v(x, t) are morphogen concentrations at (vector) position x = (x,y)T 2X and time t 2 (0,T). Here X is a
bounded domain in R2. Du and Dv are the positive diffusion coefficients of u and v, respectively. The standard Laplacian oper-
ator in two space dimensions is given by r2 = @2/@x2 + @2/@y2. The functions f1 and f2 model the reaction kinetics of u and v.
We assume there is no flux of the morphogen concentrations across the boundary of X and that the initial concentrations,
u0(x), v0(x), are bounded and positive. To illustrate our methodology we focus on the following nonlinear examples of f1 and
f2:

(i) the Schnakenberg [46] model (first proposed by Gierer and Meinhardt [18]):
f1ðu;vÞ :¼ cða� uþ u2vÞ; f 2ðu;vÞ :¼ cðb� u2vÞ; ð2Þ
where c, a and b are positive constants.
(ii) the Gierer and Meinhardt [18] model:
f1ðu;vÞ :¼ ru2

v � luþ r; f 2ðu; vÞ :¼ ru2 � av; ð3Þ
where r, l and a are positive constants.

The aim of this paper is to estimate key parameters associated with patterns arising via diffusion-induced instability. For
concreteness we focus on parameters c1 and c2 where:
c1 ¼ a; c2 ¼ b in the Schnakenberg model;
c1 ¼ l; c2 ¼ a in the Gierer—Meinhardt model:
It is natural to assume pointwise bounds on the parameters, and thus we restrict the parameters to the admissible set:
Uad ¼ ðc1; c2Þ 2 R2 : 0 < c1 6 C1; 0 < c2 6 C2
� �

; ð4Þ
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where C1 and C2 are determined from knowledge of the Turing spaces of the systems concerned. We now state the direct
problem:

(DP) For given parameters (c1,c2) belonging to the admissible set Uad, find the morphogen concentrations u(x, t) and v(x, t)
satisfying (1) with kinetics (i) or (ii) for all (x, t) 2X � [0,T).

In order to prove a technique for the identification of parameters in our method (see Garvie and Trenchea [17]), it is nec-
essary that the solutions of the reaction–diffusion system (1) exist, are unique, are positive and depend continuously on the
initial data. In the case of kinetics (i) as we were unable to find a proof in the literature we provide a proof in Appendix A.1. In
the case of kinetics (ii), existence and uniqueness are proved in the monograph by Rothe [43], and the positivity of solutions
follows from an analogous argument to the one given for kinetics (i).

3. Inverse problem statement and parameter identification

The basic description of the inverse problem is as follows. We start with given stationary ‘target functions’ ð�u; �vÞ that rep-
resent some desired morphogen concentrations of the system (a ‘pattern’). We then seek the key parameters such that the
solution of the Direct Problem (DP) (u,v) matches the target functions ð�u; �vÞ as closely as possible.

The target functions may be noisy due to measurement error, or may not be a solution of the Direct Problem (DP). Thus
we employ a least-squares technique so that (u,v) best approximates ð�u; �vÞ. The basic optimal control technique is to min-
imize a quadratic cost functional subject to the reaction–diffusion system as a constraint.

Denoting the Banach space of square integrable functions over XT :¼X � (0,T) by L2(XT), for given �u and �v in L2(XT), the
least-squares approach leads to the minimization problem:
inf
c1 ;c22Uad

Jðc1; c2Þ; ð5Þ
where the cost functional J is defined by:
Jðc1; c2Þ ¼
1
2

Z
X

c1juðx; TÞ � �uðxÞj2 þ c2jvðx; TÞ � �vðxÞj2
� �

dxþ d1

2
c2

1 þ
d2

2
c2

2; ð6Þ
subject to the reaction–diffusion system (1) as a constraint. The terms weighted by ci measure the discrepancy between the
solution and targets at the final time T. The terms weighted by di effectively bound the size of the key parameters c1 and c2,
which is a requirement of (4) and also allow for possibly noisy data. The use of the terms weighted by di is called Tikhonov
regularization (Engl et al. [11]) and circumvents the possibly ill-posedness of the inverse problem associated with the partial
differential equations (Isakov [26], Tikhonov and Arsenin [50]). There are various ways to choose the regularization param-
eters, for example, via the L-curve method, however a discussion of the optimal choice of these parameters is outside the
scope of this paper (see [52] for further details).

By appropriately choosing the weights in the cost functional we can place more emphasis on the solutions matching the
targets, or we can place more emphasis on limiting the size of the parameters.

We now state the inverse problem for parameter identification in the reaction–diffusion system (1) with kinetics (i) or
(ii):

(IP) For given target functions �u; �v 2 L2ðXÞ, find optimal parameters c�1; c
�
2

� �
2 Uad and optimal solutions (u*,v*) of (1) that

satisfy the minimization problem (5).

The rigorous proof of the existence of a solution to the inverse problem (IP) for the reaction–diffusion system (1) with
kinetics (3) is given by Garvie and Trenchea [17] and first-order necessary conditions for optimality are used to derive an
optimality system of partial differential equations whose solutions provide optimal states and controls. The corresponding
results for the simpler system with the Schnakenberg kinetics (2) are proved in a similar fashion.

4. Optimality system

The mathematical theory of optimal control theory leads to the derivation of a linear reaction–diffusion system for ‘ad-
joint’ variables (p(x, t),q(x, t)) called the ‘adjoint system’:
� @p
@t ¼ Dur2pþ g1ðp; qÞ;
� @q

@t ¼ Dvr2qþ g2ðp; qÞ;

(
ð7Þ
corresponding to the system for the Lagrange multipliers of the PDE constrained optimization problem. Corresponding to
kinetics (i) we have:
g1ðp; qÞ :¼ 2cuvðp� qÞ � cp; g2ðp; qÞ :¼ cu2ðp� qÞ; ð8Þ
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and corresponding to kinetics (ii) we have:
g1ðp; qÞ :¼ 2r
u
v � l

� �
pþ 2ruq; g2ðp; qÞ :¼ �r

u2

v2 p� aq: ð9Þ
The adjoint equations are backward in time and thus terminal conditions are needed instead of initial conditions:
pð�; TÞ ¼ c1ðuð�; TÞ � �uð�ÞÞ; qð�; TÞ ¼ c2ðvð�; TÞ � �vð�ÞÞ: ð10Þ
We also use the adjoint system to obtain an explicit characterization of the optimal controls in terms of the adjoint variables,
which are called ‘optimality conditions’:
c�1 ¼max 0;min
1
d1

Z
XT

d1pdxdt; C1

� 	� 	
;

c�2 ¼max 0;min
1
d2

Z
XT

d2qdxdt; C2

� 	� 	
; ð11Þ
where with kinetics (i) d1 = d2 = �c, and with kinetics (ii) d1 :¼ u*, d2 :¼ v*. The state equation (1), and the adjoint equation
(7) together with the optimality conditions are called the ‘optimality system’ (see Appendix A.2). For mathematical details
concerning derivation of the optimality systems see the works by Lenhart and Workman [33], Garvie and Trenchea [17].
5. Numerical methods

5.1. Approximation of the state and adjoint equations

We approximate the state equations and adjoint equations on the unit square using an unstructured grid generator. In all
our simulations we partition the domain into 8192 approximately equilateral triangles with 4225 nodes and then apply the
standard Galerkin finite element method (Ciarlet [9]) with piecewise linear continuous basis functions. For a given generic
reaction–diffusion equation of the form:
@u
@t
¼ Dr2uþ f ðuÞ;
where D is the diffusion coefficient for a morphogen u, application of the finite element method leads to a large system of
ordinary differential equations (an Initial Value Problem (IVP)) in the form:
_U ¼ Dr2
hUþ FðUÞ;
where r2
h is the discrete Laplacian depending on a (spatial) step-size h.

For the time discretization of the IVP it is well-known that several popular time-stepping schemes for reaction–diffusion
equations modeling pattern formation yield qualitatively poor results (Ruuth [44]). In order to approximate the reaction–dif-
fusion system with kinetics (i) we employed the following ‘first-order semi-implicit backward Euler difference scheme’ (1-
SBEM):
unþ1�un

Dt ¼ Dur2unþ1 þ cða� unþ1 þ ununþ1vnÞ;
vnþ1�vn

Dt ¼ Dvr2vnþ1 þ cðb� ðunÞ2vnþ1Þ;

(
ð12Þ
where Dt is the uniform time-step of the time interval [0,T] and n refers to the nth time level at time tn :¼ nDt. Note that the
diffusion and linear components of the reaction kinetics are approximated implicitly, while the nonlinear components are
treated semi-implicitly. This scheme was successfully used by Madzvamuse [35] to accurately simulate Turing patterns of
the Schnakenberg system.

To solve the reaction–diffusion system with kinetics (ii) we employed a second order, 3-level, implicit–explicit (IMEX)
scheme (2-SBDF) recommended by Ruuth [44] as a good choice for most reaction–diffusion problems for pattern formation,
namely:
3unþ1�4unþun�1

2Dt � Dur2unþ1 ¼ 2f 1ðun;vnÞ � f1ðun�1; vn�1Þ;
3vnþ1�4vnþvn�1

2Dt � Dvr2vnþ1 ¼ 2f 2ðun;vnÞ � f2ðun�1; vn�1Þ;

(
ð13Þ
where f1 and f2 are given by the Gierer–Meinhardt kinetics (3). One of the advantages of this scheme is that we can use rel-
atively large time-steps and still obtain a good approximation of highly oscillatory solutions. IMEX schemes use an implicit
discretization of the diffusion term, and an explicit discretization of the reaction terms. As the scheme 2-SBDF involves three
time levels we approximate the solutions at the first time level using a first-order IMEX scheme (1-SBDF) with a small time-
step (Ruuth [44]).

The numerical schemes used to approximate the linear adjoint equations were similar to the schemes used to approximate
the state equations. Application of the finite element method for the spatial discretization coupled with the time-stepping
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schemes in all cases led to sparse linear systems of algebraic equations, which were solved in MATLAB (R2008a) using the
GMRES iterative solver.
5.2. Construction of the target functions

The target functions ð�u; �vÞ used in this paper were generated from the reaction–diffusion systems themselves via the
mechanism of diffusion-driven instability (the ‘Turing mechanism’). Solutions were generated on the unit square with
homogeneous Neumann boundary conditions. The standard approach in the literature for constructing Turing patterns is
to prescribe the initial data equal to small random perturbations about the corresponding stationary states of the spatially
homogeneous systems, i.e. the reaction–diffusion systems without diffusion. The problem with this approach is that this is
often done using an unspecified random number generator with an unspecified ‘seed’, and thus the numerical results are
effectively not reproducible. To circumvent this problem we perturb the stationary states using known functions. For kinetics
(i) we choose the initial conditions (see Ruuth [44], or Madzvamuse [35]):
Fig. 1.
functio
For det
uðx;0Þ ¼ 0:919145þ 0:0016 cosð2pðxþ yÞÞ þ 0:01
X8

j¼1

cosð2pjxÞ;

vðx;0Þ ¼ 0:937903þ 0:0016 cosð2pðxþ yÞÞ þ 0:01
X8

j¼1

cosð2pjxÞ;
while the initial conditions for kinetics (ii) were chosen equal to the same functions, but with the ‘cosine’ function replaced
with the ‘sine’ function.

The state equations were solved until the transient solutions died out, which was determined by waiting until some large
time t = T when the l2 norm of the change in state in one time-step was less than some small tolerance. We checked that the
patterns were unchanged at t = 2T, thus confirming that the solutions were indeed stationary. Target functions for u are
shown in Fig. 1 (the patterns for v are similar). See the caption for the parameter values.
5.3. Discrete optimal control procedure

5.3.1. The standard algorithm
To approximate the Inverse Problem (IP) we applied a ‘variable step gradient algorithm’ yielding a sequence of approx-

imations to the optimal solutions and optimal parameters (Ciarlet [10], Garvie and Trenchea [17], Gunzburger [21],
Gunzburger and Manservisi [22]). The pseudo-code for the standard algorithm is given in Algorithm 1. Algorithm 1 is applied
to the discrete State Equations (SE), discrete Adjoint Equations (AE) and discrete objective functional at the final time-step tN.
We begin by making an initial guess for the parameters c1(0), c2(0) and starting values for the step length k and a prescribed
tolerance e used to test the convergence of the cost functional. Initial conditions for the states, namely (u0,v0), were chosen to
be the same as the initial conditions used to generate the target functions (see Section 5.2). Then for each iteration k of the
gradient method we solve the nonlinear reaction–diffusion system for u(k), v(k) (k P 1), and store the cost J(c1(k),c2(k)). We
also compute the adjoint variables p(k), q(k), determine d J(c1(k),c2(k))/d(c1(k),c2(k)), the total derivative of J with respect to
(a) Target function �u for the Schnakenberg kinetics: T = 5, Du = 1, Dv = 10, c = 1000, a = 0.126779, b = 0.792366, Dt = 0.0001 (1-SBEM). (b) Target
n �u for the Gierer–Meinhardt kinetics: T = 238.853, Dv = 0.27, Du = 9.45 � 10�4, r = 0.001, a = 100, l = 2.5, Dt = 1 � 10�8 (1-SBDF), Dt = 0.001 (2-SBDF).
ails concerning the finite element methods and initial and boundary conditions see the main text above.
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the vector (c1(k),c2(k)), and take a step along this direction using the appropriate step length k, provided the cost functional
decreases. If the cost functional fails to decrease, then the step length is rejected and the step length decreased. If the step
length is accepted, then the parameters (c1(k),c2(k)) are updated using a Standard Gradient Update (SGU):
1 For
ðc1ðkÞ; c2ðkÞÞ ¼ ðc1ðk� 1Þ; c2ðk� 1ÞÞ � k
dJðc1ðk� 1Þ; c2ðk� 1ÞÞ
dðc1ðk� 1Þ; c2ðk� 1ÞÞ ; k P 1: ð14Þ
The procedure is repeated until the relative change in the cost is smaller than the tolerance e, namely:
JNðkÞ � JNðk� 1Þ
JNðkÞ












 6 e; ð15Þ
where JN(k) refers to the cost at time level N at iteration k. In order to take into account possible stagnation of the iterative
method1 we exit the algorithm if the step length k becomes smaller than the tolerance e. The iterative method is computa-
tionally expensive as each iteration of the discrete optimal control algorithm requires the numerical solution of the state
equation up to some final time T = NDt, the numerical solution of the adjoint equations backward in time from T, and gra-
dient updates.

Algorithm 1. Standard gradient algorithm

initialization
k 0;
RelError 1000 {Arbitrary large starting value};
Choose initial guess (c1(0),c2(0)), k, and e;
for n = 1, . . . ,N do

solve SE for (un(0),vn(0)), with (u0(0),v0(0)) = (u0,v0);
end for
evaluate JN(0);
k 2k/3;

end initialization
main loop

while RelError > e do
k 3k/2;
k k + 1;
for n = N � 1, . . . ,0 do

solve AE for (pn(k),qn(k)), with (pN(k),qN(k));
end for
solve SGU for (c1(k),c2(k));
for n = 1, . . . ,N do

solve SE for (un(k),vn(k)), with (u0(k),v0(k)) = (u0,v0);
end for
evaluate JN(k);
while JN(k) P JN(k � 1) do

k k/2;
if k < e do

print (‘Algorithm stagnated’)
end if
solve SGU for (c1(k),c2(k));
for n = 1, . . . ,N

solve SE for (un(k),vn(k)), with (u0(k),v0(k)) = (u0,v0);
end for
evaluate JN(k);

end while
RelError jJN(k) � JN(k � 1)j/jJN(k)j

end while
end main loop
example, when the cost functional is approximately flat.
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5.3.2. A modified discrete optimal control algorithm
We present a Modified Discrete Optimal Control Algorithm (MDOCA) based on a modification of the standard algorithm

discussed above. The pseudo-code for the MDOCA is given in Algorithm 2. The MDOCA algorithm takes advantage of the fact
that the target functions are stationary solutions of the state equations. As the target functions are known data, we choose
the initial data of the state equations equal to the target functions, take the final time T equal to only two time steps2 Dt, and
seek parameters c1(k) and c2(k) that correspond to stationary initial data. The other steps of the MDOCA algorithm are essen-
tially the same as in the standard algorithm. If the parameters c1(k) and c2(k) are optimal, then the cost after two time-steps 2Dt
is zero and the algorithm stops. If the parameters c1(k) and c2(k) are suboptimal, then the initial data evolve over two time-steps
2Dt. The discrepancy between the solutions and targets is then measured by the cost functional and the modified variable step
gradient algorithm adjusts the parameters accordingly.
Algorithm 2. Modified gradient algorithm (MDOCA)

initialization k 0;
RelError 1000 {Arbitrary large starting value};
Choose initial guess (c1(0),c2(0)), k, and e;
for n = 1,2 do

solve SE for (un(0),vn(0)), with ðu0ð0Þ;v0ð0ÞÞ ¼ ð�u; �vÞ;
end for
evaluate J2(0);
k 2k/3;

end initialization
main loop

while RelError > e do
k 3k/2;
k k + 1;
for n = 1,0 do

solve AE for (pn(k),qn(k)), with (p2(k),q2(k));
end for
solve SGU for (c1(k),c2(k));
for n = 1,2 do

solve SE for (un(k),vn(k)), with ðu0ðkÞ;v0ðkÞÞ ¼ ð�u; �vÞ;
end for
evaluate J2(k);
while J2(k) P J2(k � 1) do

k k/10;
if k < e do

print (‘Algorithm stagnated’)
end if
solve SGU for (c1(k),c2(k));
for n = 1, . . . ,N do

solve SE for (un(k),vn(k)), with ðu0ðkÞ;v0ðkÞÞ ¼ ð�u; �vÞ;
end for
evaluate J2(k);

end while
RelError jJ2(k) � J2(k � 1)j/jJ2(k)j

end while
end main loop
6. Numerical results

6.1. Experiments with the MDOCA algorithm

We were unable to obtain satisfactory results using the standard algorithm as the iterative procedure failed to converge
and frequently stagnated, yielding parameter values far from the optimal ones (results not presented). However, the MDOCA
algorithm converged for almost all starting values (‘initial guesses’) that we chose for the key parameters c1 and c2, taking on
the order of half a minute to accurately estimate the optimal parameters used to generate the target patterns (using Matlab
7.6.0 (R2008a) on a Mac Pro with a 2 � 3 GHz Dual-Core Intel Xeon processor). Table 1 shows the results of one experiment
2 Two time-steps are the minimum number of time-steps that the discrete optimal control procedure needs to run.



Table 1
Parameter estimates for the modified algorithm.

Parameter Start value Estimated value Optimal value % Rel error

a 5 0.126776 0.126779 2.4 � 10�3

b 0.3 0.792365 0.792366 1.3 � 10�4

l 50 2.499375 2.5 2.5 � 10�2

a 30 100.045529 100 4.6 � 10�2

Fig. 2. Change in cost with iteration count. (a) Schnakenberg system: Du = 1, Dv = 10, c = 1000, Dt = 0.0001 (1-SBEM), c1 = c2 = 1 � 1010, d1 = d2 = 1. (b)
Gierer–Meinhardt system: Dv = 0.27, Du = 9.45 � 10�4, r = 0.001, Dt = 1 � 10�8 (1-SBDF), Dt = 0.001 (2-SBDF), c1 = 5.5 � 109, c2 = 1 � 1015, d1 = d2 = 0.
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for each system. We obtained more significant figures of accuracy when estimating a and b than when estimating l and a,
which was generally the case. To verify convergence we also plotted the cost functional against iteration count for both reac-
tion–diffusion systems. The plots show an initial rapid decrease in cost with a subsequent slow decrease after the first few
iterations of the optimal control algorithm (see Fig. 2 and the caption for the remaining parameters used in the simulations).
We also checked that the solutions at the final time T corresponding to the exact parameters and the estimated parameters
(see Table 1) were the same.

6.2. Robustness of the MDOCA algorithm

To test the robustness of the MDOCA algorithm, we repeated the experiments of Section 6.1 with perturbing target func-
tions �u and �v . The target functions for the Schnakenberg and Gierer–Meinhardt systems (see Fig. 1) were perturbed at every
point on the computational grid by adding pseudo random numbers3 drawn from a Normal distribution with mean 0 and stan-
dard deviation r. As the ranges for �u and �v differ significantly, to add a comparable level of noise to both targets, we chose r
equal to s% of the range of the exact target functions, namely, for the target �u:
3 Usi
4 Usi
r ¼ s
100

max
ðx;yÞ2½0;1�2

�uðx; yÞ � min
ðx;yÞ2½0;1�2

�uðx; yÞ
" #

with s ¼ 0;1;5;10;20;50;
and similarly for �v . Taking s = 0 corresponds to the ‘exact’ target functions with no added noise. Negative values of the per-
turbed target functions were truncated to machine epsilon (approximately 2.22 � 10�16 in Matlab 7.6.0 (R2008a)).

The perturbed target functions are shown in Fig. 3 (for s = 5,10,50), and the parameter estimates for various levels of
noise are displayed in Tables 2 and 3. The percent relative errors are given (to 2 s.f.) with respect to the optimal
parameter values (see Table 1). Similar results were obtained using pseudo random numbers4 drawn from an uniform
distribution to perturb the target functions up to a maximum of ±50% at every point on the computational grid (results not
shown).

To test how well the parameters estimated from noisy data can be used to recover the target functions without noise, we
solved both the Schnakenberg and Gierer–Meinhardt reaction–diffusion until the final times T using the estimated param-
eters given in Tables 2 and 3. Fig. 4 shows the solutions u for various levels of noise.
ng the intrinsic function RANDN in Matlab 7.6.0 (R2008a).
ng the intrinsic function RAND in Matlab 7.6.0 (R2008a).



Fig. 3. Targets functions �u generated from the Schnakenberg system (1st column figures) and the Gierer–Meinhardt system (2nd column figures) with
various levels of additive noise using pseudo random numbers drawn from a Normal distribution with mean 0 and standard deviation r equal to s% of the
range of the exact targets (see Fig. 1): (a) and (b) s = 5%, (c) and (d) s = 10%, (e) and (f) s = 50%. Negative values are truncated to machine epsilon
(approximately 2.22 � 10�16 in Matlab 7.6.0 (R2008a)). For all other parameter values see Fig. 1.

Table 2
Parameter estimates for the Schnakenberg system with various levels of s.

s a % Rel error b % Rel error

0 0.126776 2.4 � 10�3 0.792365 1.3 � 10�4

10 0.122131 3.7 0.804886 1.6
20 0.112044 12 0.829722 4.7
30 0.096992 23 0.868733 9.6
40 0.083251 34 0.920127 16
50 0.050569 60 0.989965 25
60 0.020644 84 1.071871 35
70 0 100 1.153198 46
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Table 3
Parameter estimates for the Gierer–Meinhardt system with various levels of s.

s a % Rel error l % Rel error

0 100.045529 0.046 2.499375 0.025
5 101.516086 1.5 2.480466 0.78

10 104.990654 5.0 2.307840 7.7
15 108.445092 8.4 2.377437 4.9
20 113.064953 13 2.327029 6.9
25 36.306046 64 >5.2 � 1010 >2.1 � 1011
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The results in Tables 2 and 3 verify that the MDOCA algorithm successfully yields parameter estimates from noisy data. In
the Schnakenberg case, the percent relative error in the parameter estimates increases roughly linearly with increasing levels
of noise added. In the Gierer–Meinhardt case the pattern is less clear-cut, and with noise levels above a certain critical value
Fig. 4. Solutions u for the Schnakenberg system (1st column figures) and the Gierer–Meinhardt system (2nd column figures) using the estimated
parameters from Tables 2 and 3: (a) and (b) s = 5, (c) and (d) s = 10, (e) s = 50, (f) s = 20. For the remaining parameters see Fig. 2.
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(s P 25) the parameter estimates degrade rapidly. However with modest levels of noise in the data (approximately s 6 15),
the modified algorithm applied to both systems yields reasonable parameter estimates (relative errors less than 10%).

The robustness of the MDOCA algorithm was demonstrated by solving the state equations with parameters estimated
from noisy data. With noise levels corresponding to about s = 10 in the Schnakenberg case and s = 5 in the Gierer–Meinhardt
case, the target functions without noise were accurately recovered (see Fig. 4).
6.2.1. Sensitivity of pattern formation on model parameters
Once the optimal parameters of a system have been accurately found we can investigate how sensitive the patterns are

to changes in the parameters. For fixed target patterns we plotted the surfaces corresponding to the cost as a function of
the parameters in the Schnakenberg and Gierer–Meinhardt reaction–diffusion systems (see Fig. 5). We can see from
Fig. 5(a) that the target pattern is relatively insensitive to changes in a compared to changes in b. Similarly, we can see
from Fig. 5(b) that the target pattern is relatively insensitive to changes in a compared to changes in l. The insensitivity
of a pattern to changes in a model parameter tells us that there exists a family of similar patterns in a neighborhood of the
optimal pair c�1; c

�
2

� �
. For example, in Fig. 5(b) if we fix l at its optimal value l* = 2.5, then we expect the patterns asso-

ciated with the points (2.5,a), a 2 R, to be similar, provided we are close to the optimal pair (2.5,100). This is verified in
Fig. 6, which shows the patterns associated with points close to the optimal parameter pair (l*,a*), where we have
Fig. 6. Morphogen concentrations u for the Gierer–Meinhardt system with T = 238.853, Dv = 0.27, Du = 9.45� 10�4, r = 0.001, Dt = 1� 10�8 (1-SBDF), Dt = 0.001
(2-SBDF). (a) a = 90, l = 2.5, (b) a = 100, l = 2.4. For details concerning the finite element methods and initial and boundary conditions see the main text above.

Fig. 5. (a) The cost functional as a function of the parameters c1 and c2 for (a) the Schnakenberg system, and (b) the Gierer–Meinhardt system. The surfaces
were plotted using 200 � 200 points in the c1 � c2 plane.



M.R. Garvie et al. / Journal of Computational Physics 229 (2010) 7058–7071 7069
perturbed either l* or a*. As predicted, the pattern in Fig. 6(a) is very similar to the target pattern in Fig. 1(b), unlike the
pattern in Fig. 6(b) that is very different.

7. Conclusion

In this paper we presented a Modified Discrete Optimal Control Algorithm (MDOCA) for the accurate and efficient esti-
mation of parameters used to generate patterns via the mechanism of diffusion-driven instability. Unlike previous studies,
which rely on linear analysis of parameter estimation in Turing systems, with the assumption that these will predict the
form of patterns in the nonlinear regime, the modified algorithm is based on the rigorous mathematical theory of optimal
control theory and provides a systematic and reliable approach to parameter estimation. The methodology is illustrated with
the Schnakenberg and Gierer–Meinhardt reaction–diffusion systems where two key parameters are estimated in each mod-
el. The robustness of the algorithm was also verified. We demonstrating the ability of the algorithm to yield reasonable esti-
mates of the model parameters, with perturbed target functions using various levels of additive noise.

The MDOCA algorithm not only improves significantly the standard variable step gradient algorithm, but might also prove
useful when coupled with linear stability analysis in order to determine parameter values necessary for the formation of spa-
tial structure. Furthermore, it offers the possibility of deriving parameters for patterns exhibited far from primary bifurcation
points where linear stability analysis is no longer valid.

The novelty of our numerical procedure is due to the manner in which we modified a standard variable step gradient
algorithm for updating the control variables in a discrete optimal control procedure. We take advantage of the fact that
the target functions are stationary solutions by choosing the initial data equal to the target functions. As a consequence
of this choice, each iteration of the MDOCA algorithm requires only two time-steps for the solution of the state and adjoint
equations, which is a huge saving in computational cost compared to the standard optimal control procedure. The standard
optimal control procedure typically requires time integration with small time-steps over a large time interval [0,T].

There are some limitations of the MDOCA algorithm. Firstly, it cannot be used to estimate parameters associated with
non-stationary target functions. Furthermore, if the target functions are not sufficiently ‘close’ to a solution of the reac-
tion–diffusion systems, the algorithm may fail to converge, or yield highly inaccurate estimates of the model parameters.
However, our numerical experiments demonstrate the ability of the algorithm to cope with modest levels of noise in the
data. Another factor in the successful performance of the algorithm is the need for a careful choice of weights in the cost
functional and initial guesses for the parameters to be estimated.

In all our numerical experiments we used the reaction–diffusion systems themselves to generate the target patterns via
the mechanism of diffusion-driven instability. Ideally, we would like to estimate the model parameters associated with tar-
get patterns ð�u; �vÞ arising from experimental data. Due to the robustness of the MDOCA algorithm, this should be possible in
theory. The MDOCA algorithm should be applicable to a number of well-studied experimental systems. For example, the first
experimental evidence of Turing patterns was observed by Lengyel and Epstein [32] in the CIMA chemical reaction, almost
40 years after Turing’s predictions. The CIMA reaction is modeled by a coupled pair of nonlinear reaction–diffusion equa-
tions, which in non-dimensional form has four model parameters. In principle, we could apply the MDOCA algorithm to
parameterize this system using experimental data; however, this is the subject of future work.

The MDOCA algorithm developed shows great promise as a versatile tool for the mathematical modeling of the Turing
mechanism. In particular, it could determine to which parameters model behavior is most sensitive and therefore prioritize
which parameters should be the focus of experimental investigation.
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Appendix A

A.1. Well-posedness of the Schnakenberg system

We provide a proof of the well-posedness of the Schnakenberg system using the theoretical setup of Morgan [38].

Theorem A.1. Let the initial concentrations (u0(x),v0(x)) be bounded and lie in (0,1)2 for all x 2X. Then there exists an unique
positive classical solution of the Schnakenberg system (1) with kinetics (2) augmented with zero flux boundary conditions for all
(x, t) in X � [0,1).
Proof. For notational convenience we swap u and v in the Schnakenberg system, which effectively swaps the first and
second equations in the reaction kinetics (2), yielding the equivalent system:
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@u
@t ¼ Dur2uþ f̂ 1ðu; vÞ;
@v
@t ¼ Dvr2v þ f̂ 2ðu;vÞ;

(

where:
f̂ 1ðu;vÞ :¼ cðb� v2uÞ; f̂ 2ðu;vÞ :¼ cða� v þ v2uÞ:
The local existence of solutions follows from well-known semigroup theory (see for example Pazy [41], or Henry [23]). In
particular, from Proposition 1 in Hollis et al. [25] it follows immediately that the Schnakenberg system has an unique non-
continuable classical solution (u,v) for (x, t) 2X � [0,Tmax). To prove positivity of the solutions observe that the reaction
kinetics satisfy:
f̂ 1ð0;vÞ; f̂ 2ðu;0Þ > 0 for all u; v > 0;
and recall that the initial data lie in the positive quadrant of phase space by assumption. Thus by a maximum principle
(Smoller [49], Lemma 14.20) the solution (u(x, t),v(x, t)) lies in (0,1)2 for all x 2X and for all time for which the solution
exists. Thus (0,1)2 is positively invariant for the system. We apply the theoretical framework of Morgan [38] to prove global
existence and uniqueness of classical solutions, which requires ‘intermediate sum’ conditions and polynomial growth con-
ditions on the kinetics to hold.

We first define a so called Lyapunov-type function given by:
Hðu;vÞ :¼ h1ðuÞ þ h2ðvÞ; where h1ðuÞ ¼ u; h2ðvÞ ¼ v :
Then with a11 = a22 = a21 = 1, K2 = K4 = K6 = c(a + b), K1 = r = 1, K3 = c/3, K5 = 0 and q = 3 the following conditions are easily ver-
ified for all (u,v) 2 (0,1)2, corresponding to conditions (H4)(i), (H5) and (H6) in Morgan [38], respectively:
a11h01ðuÞf̂ 1ðu; vÞ 6 K1ðHðu;vÞÞr þ K2;

a21h01ðuÞf̂ 1ðu; vÞ þ a22h02ðvÞf̂ 2ðu;vÞ 6 K1ðHðu;vÞÞr þ K2;

h01ðuÞf̂ 1ðu;vÞ; h02ðvÞf̂ 2ðu;vÞ 6 K3ðHðu; vÞÞq þ K4;

rHðu; vÞ �
f̂ 1ðu;vÞ

f̂ 2ðu;vÞ

 !
6 K5Hðu;vÞ þ K6:
Thus as r = 1 Theorems 3.2 and 2.2 in Morgan [38] hold, which implies Tmax =1, i.e. we have global existence of positive,
classical solutions. h
A.2. Differentiability of the cost functional J

One can prove that the map (c1,c2) ´ (u,v) is Gâteaux differentiable and the derivative û ¼ du
dðc1 ;c2Þ

ĉ1; ĉ2ð Þ; v̂ ¼ dv
dðc1 ;c2Þ

ĉ1; ĉ2ð Þ
satisfies a linear ‘sensitivity equation’:
û0 ¼ Dur2ûþ df1

dðc1; c2Þ
ðu;vÞ;

v̂ 0 ¼ Dvr2v̂ þ df2

dðc1; c2Þ
ðu; vÞ:
Furthermore, the optimality of c�1; c
�
2

� �
yields that the derivative of J:
dJ
dðc1; c2Þ

ĉ1; ĉ2ð Þ ¼
Z

X
c1ðuðx; TÞ � �uðxÞÞûðx; TÞ þ c2ðvðx; TÞ � �vðxÞÞv̂ðx; TÞð Þdxþ d1c1ĉ1 þ d2c2ĉ2;
must be zero on all directions ĉ1; ĉ2ð Þ in the tangent cone of Uad. When coupling the sensitivities of the state equation and
cost functional through the adjoint equation (7), after integration by parts, one obtains the optimality conditions.
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